Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
EClinicalMedicine ; 61: 102040, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37337616

ABSTRACT

Background: Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality. Methods: In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration >10 BAU/mL and a previous SARS-CoV-2 infection as N IgG >14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wild-type (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41. Findings: Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations. Interpretation: A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution. Funding: The Netherlands Organisation for Health Research and Development and Amsterdam UMC.

2.
Cell Rep ; 42(5): 112524, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37209096

ABSTRACT

Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines.


Subject(s)
Lassa Fever , Lassa virus , Humans , Antibodies, Neutralizing , Lassa Fever/prevention & control , Glycoproteins , Antigens, Viral
3.
iScience ; 26(4): 106540, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37063468

ABSTRACT

SARS-CoV-2 variants evade current monoclonal antibody therapies. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies taking advantage of the avidity and synergy provided by targeting different epitopes. Here we used controlled Fab-arm exchange to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader antibodies that also neutralize SARS-CoV. We demonstrated that the parental antibodies rely on avidity for neutralization using bsAbs containing one irrelevant Fab arm. Using mass photometry to measure the formation of antibody:spike complexes, we determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike, observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent agents to combat circulating and future SARS-like coronaviruses.

4.
iScience ; 25(12): 105649, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36439375

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses continuous challenges in combating the virus. Here, we describe vaccination strategies to broaden SARS-CoV-2 and sarbecovirus immunity by combining spike proteins based on different viruses or viral strains displayed on two-component protein nanoparticles. First, we combined spike proteins based on ancestral and Beta SARS-CoV-2 strains to broaden SARS-CoV-2 immune responses. Inclusion of Beta spike improved neutralizing antibody responses against SARS-CoV-2 Beta, Gamma, and Omicron BA.1 and BA.4/5. A third vaccination with ancestral SARS-CoV-2 spike also improved cross-neutralizing antibody responses against SARS-CoV-2 variants, in particular against the Omicron sublineages. Second, we combined SARS-CoV and SARS-CoV-2 spike proteins to broaden sarbecovirus immune responses. Adding SARS-CoV spike to a SARS-CoV-2 spike vaccine improved neutralizing responses against SARS-CoV and SARS-like bat sarbecoviruses SHC014 and WIV1. These results should inform the development of broadly active SARS-CoV-2 and pan-sarbecovirus vaccines and highlight the versatility of two-component nanoparticles for displaying diverse antigens.

5.
JAMA Oncol ; 8(10): 1477-1483, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35951338

ABSTRACT

Importance: It has become common practice to offer immunocompromised patients with hematologic cancers a third COVID-19 vaccination dose, but data substantiating this are scarce. Objective: To assess whether a third mRNA-1273 vaccination is associated with increased neutralizing antibody concentrations in immunocompromised patients with hematologic cancers comparable to levels obtained in healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. Design, Setting, and Participants: This prospective observational cohort study was conducted at 4 university hospitals in the Netherlands and included 584 evaluable patients spanning the spectrum of hematologic cancers and 44 randomly selected age-matched adults without malignant or immunodeficient comorbidities. Exposures: One additional mRNA-1273 vaccination 5 months after completion of the standard 2-dose mRNA-1273 vaccination schedule. Main Outcomes and Measures: Serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens prior to and 4 weeks after a third mRNA-1273 vaccination, and antibody neutralization capacity of wild-type, Delta, and Omicron variants in a subgroup of patients. Results: In this cohort of 584 immunocompromised patients with hematologic cancers (mean [SD] age, 60 [11.2] years; 216 [37.0%] women), a third mRNA-1273 vaccination was associated with median S1-IgG concentrations comparable to concentrations obtained by healthy individuals after the 2-dose mRNA-1273 schedule. The rise in S1-IgG concentration after the third vaccination was most pronounced in patients with a recovering immune system, but potent responses were also observed in patients with persistent immunodeficiencies. Specifically, patients with myeloid cancers or multiple myeloma and recipients of autologous or allogeneic hematopoietic cell transplantation (HCT) reached median S1-IgG concentrations similar to those obtained by healthy individuals after a 2-dose schedule. Patients receiving or shortly after completing anti-CD20 therapy, CD19-directed chimeric antigen receptor T-cell therapy recipients, and patients with chronic lymphocytic leukemia receiving ibrutinib were less responsive or unresponsive to the third vaccination. In the 27 patients who received cell therapy between the second and third vaccination, S1 antibodies were preserved, but a third mRNA-1273 vaccination was not associated with significantly enhanced S1-IgG concentrations except for patients with multiple myeloma receiving autologous HCT. A third vaccination was associated with significantly improved neutralization capacity per antibody. Conclusions and Relevance: Results of this cohort study support that the primary schedule for immunocompromised patients with hematologic cancers should be supplemented with a delayed third vaccination. Patients with B-cell lymphoma and allogeneic HCT recipients need to be revaccinated after treatment or transplantation. Trial Registration: EudraCT Identifier: 2021-001072-41.


Subject(s)
COVID-19 , Hematologic Neoplasms , Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Adult , Female , Middle Aged , Male , Antibody Formation , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , Prospective Studies , Cohort Studies , COVID-19 Vaccines , SARS-CoV-2 , Hematologic Neoplasms/therapy , Immunocompromised Host , Antibodies, Neutralizing , Immunoglobulin G
6.
Immunity ; 55(9): 1725-1731.e4, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35973428

ABSTRACT

Large-scale vaccination campaigns have prevented countless hospitalizations and deaths due to COVID-19. However, the emergence of SARS-CoV-2 variants that escape from immunity challenges the effectiveness of current vaccines. Given this continuing evolution, an important question is when and how to update SARS-CoV-2 vaccines to antigenically match circulating variants, similarly to seasonal influenza viruses where antigenic drift necessitates periodic vaccine updates. Here, we studied SARS-CoV-2 antigenic drift by assessing neutralizing activity against variants of concern (VOCs) in a set of sera from patients infected with viral sequence-confirmed VOCs. Infections with D614G or Alpha strains induced the broadest immunity, whereas individuals infected with other VOCs had more strain-specific responses. Omicron BA.1 and BA.2 were substantially resistant to neutralization by sera elicited by all other variants. Antigenic cartography revealed that Omicron BA.1 and BA.2 were antigenically most distinct from D614G, associated with immune escape, and possibly will require vaccine updates to ensure vaccine effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral/genetics , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
7.
PLoS Med ; 19(5): e1003991, 2022 05.
Article in English | MEDLINE | ID: mdl-35580156

ABSTRACT

BACKGROUND: Emerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. METHODS AND FINDINGS: In a prospective cohort of 165 SARS-CoV-2 naive health care workers in the Netherlands, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. Four weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of mRNA-1273, followed by recipients of BNT162b2 (geometric mean titers (GMT) of 358 [95% CI 231-556] and 214 [95% CI 153-299], respectively; p<0.05), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 18 [95% CI 11-30] and 14 [95% CI 8-25] IU/ml, respectively; p<0.001). VOCs neutralization was reduced in all vaccine groups, with the greatest reduction in neutralization GMT observed against the Omicron variant (fold change 0.03 [95% CI 0.02-0.04], p<0.001). The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. We used linear regression and linear mixed model analysis. All results were adjusted for possible confounding of age and sex. Study limitations include the lack of cellular immunity data. CONCLUSIONS: Overall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination, which implies the use of mRNA vaccines for both initial and booster vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Cohort Studies , Health Personnel , Humans , Netherlands/epidemiology , Prospective Studies , SARS-CoV-2/genetics
8.
EClinicalMedicine ; 47: 101393, 2022 May.
Article in English | MEDLINE | ID: mdl-35465077

ABSTRACT

Background: Vaccination of lactating women against COVID-19 may protect not only themselves but also their breastfed infant through human milk. Therefore, it is important to gain insight into the human milk antibody response after immunization with the various vaccines that are currently widely used. The aim of this study is to determine and compare the antibody response in human milk following vaccination with mRNA- and vector-based vaccines up to over two months post-vaccination. Methods: This prospective cohort study was conducted in the Netherlands between January 06, 2021 and July 31, 2021. Participants were recruited through social media. Human milk samples were collected longitudinally during a period of 70 days from women receiving one of the four different severe acute respiratory coronavirus 2 (SARS-CoV-2) vaccines: Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273), Oxford/AstraZeneca (AZD1222) and Johnson&Johnson (Ad26.COV2.S). SARS-CoV-2-specific antibodies were measured using an enzyme-linked immunosorbent assay. The area under the curve (AUC) of the Immunoglobulins A (IgA) and G (IgG) antibody response was determined over 15 and 70 days following the first vaccination and compared between the different vaccines. Findings: This study enrolled 134 vaccinated lactating women of whom 97 participated the entire study period. In total, 1887 human milk samples were provided. The human milk antibody response differed between SARS-CoV-2 vaccines over the study period. The mean AUC of SARS-CoV-2-specific IgA, but not IgG, in human milk over 15 days was higher after vaccination with an mRNA-based vaccine than a vector-based vaccine (AUC with respect to ground [AUCg] ± the standard error of the mean [SEM] for IgA was 6·09 ± 0·89 in the BNT162b2 group, 7·48 ± 1·03 in the mRNA-1273 group, 4·17 ± 0·73 in the AZD1222 group, and 5·71 ± 0·70 in the Ad26.COV2.S group). Over a period of 70 days, the mean AUCg of both IgA and IgG was higher after vaccination with an mRNA-based vaccine than a vector-based vaccine (AUCg ± SEM for IgA was 38·77 ± 6·51 in the BNT162b2 group, 50·13 ± 7·41 in the mRNA-1273 group, 24·12 ± 5·47 in the AZD1222 group, and 28·15 ± 6·69 in the Ad26.COV2.S group; AUCg ± SEM for IgG was 40·43 ± 2·67 in the BNT162b2 group, 37·01 ± 2·38 in the mRNA-1273 group, 16·04 ± 5·09 in the AZD1222 group, and 10·44 ± 2·50 in the Ad26.COV2.S group). Interpretation: Overall, maternal vaccination during lactation with an mRNA-based vaccine resulted in higher SARS-CoV-2 antibody responses in human milk compared to vector-based vaccines. Therefore, vaccination with mRNA-based vaccines, preferably with the mRNA-1273 vaccine, might not only provide better immunological protection for the mother but also for her breastfed infant. Funding: Stichting Steun Emma Kinderziekenhuis and the Amsterdam Infection and Immunity Institute (grant 24175).

9.
Cell Rep Med ; 3(1): 100486, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35103254

ABSTRACT

The urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose-sparing strategies. Here, we evaluate the SARS-CoV-2-specific antibody responses following BNT162b2 vaccination in 150 previously SARS-CoV-2-infected individuals from a population-based cohort. One week after first vaccine dose, spike protein antibody levels are 27-fold higher and neutralizing antibody titers 12-fold higher, exceeding titers of fully vaccinated SARS-CoV-2-naive controls, with minimal additional boosting after the second dose. Neutralizing antibody titers against four variants of concern increase after vaccination; however, overall neutralization breadth does not improve. Pre-vaccination neutralizing antibody titers and time since infection have the largest positive effect on titers following vaccination. COVID-19 severity and the presence of comorbidities have no discernible impact on vaccine response. In conclusion, a single dose of BNT162b2 vaccine up to 15 months after SARS-CoV-2 infection offers higher neutralizing antibody titers than 2 vaccine doses in SARS-CoV-2-naive individuals.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Vaccination/methods , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , Female , Follow-Up Studies , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Neutralization Tests , Prospective Studies , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome
10.
Blood Adv ; 6(5): 1537-1546, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35114690

ABSTRACT

Vaccination guidelines for patients treated for hematological diseases are typically conservative. Given their high risk for severe COVID-19, it is important to identify those patients that benefit from vaccination. We prospectively quantified serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens during and after 2-dose mRNA-1273 (Spikevax/Moderna) vaccination in hematology patients. Obtaining S1 IgG ≥ 300 binding antibody units (BAUs)/mL was considered adequate as it represents the lower level of S1 IgG concentration obtained in healthy individuals, and it correlates with potent virus neutralization. Selected patients (n = 723) were severely immunocompromised owing to their disease or treatment thereof. Nevertheless, >50% of patients obtained S1 IgG ≥ 300 BAUs/mL after 2-dose mRNA-1273. All patients with sickle cell disease or chronic myeloid leukemia obtained adequate antibody concentrations. Around 70% of patients with chronic graft-versus-host disease (cGVHD), multiple myeloma, or untreated chronic lymphocytic leukemia (CLL) obtained S1 IgG ≥ 300 BAUs/mL. Ruxolitinib or hypomethylating therapy but not high-dose chemotherapy blunted responses in myeloid malignancies. Responses in patients with lymphoma, patients with CLL on ibrutinib, and chimeric antigen receptor T-cell recipients were low. The minimal time interval after autologous hematopoietic cell transplantation (HCT) to reach adequate concentrations was <2 months for multiple myeloma, 8 months for lymphoma, and 4 to 6 months after allogeneic HCT. Serum IgG4, absolute B- and natural killer-cell number, and number of immunosuppressants predicted S1 IgG ≥ 300 BAUs/mL. Hematology patients on chemotherapy, shortly after HCT, or with cGVHD should not be precluded from vaccination. This trial was registered at Netherlands Trial Register as #NL9553.


Subject(s)
COVID-19 , Hematology , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
11.
NPJ Vaccines ; 6(1): 146, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34862406

ABSTRACT

The emergence of SARS-CoV-2 variants that are more resistant to antibody-mediated neutralization pose a new hurdle in combating the COVID-19 pandemic. Although vaccines based on the original Wuhan sequence have been shown to be effective at preventing COVID-19, their efficacy is likely to be decreased against more neutralization-resistant variants-of-concern (VOC), in particular, the Beta variant originating in South Africa. We assessed, in mice, rabbits, and non-human primates, whether a third vaccination with experimental Wuhan-based Spike vaccines could alleviate this problem. Our data show that a third immunization improves neutralizing antibody titers against the variants-of-concern, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2). After three vaccinations, the level of neutralization against Beta was similar to the level of neutralization against the original strain after two vaccinations, suggesting that simply providing a third immunization could nullify the reduced activity of current vaccines against VOC.

SELECTION OF CITATIONS
SEARCH DETAIL
...